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ABSTRACT

A new method for the synthesis of 5-arylethynyl-8-hydroxyquinoline ligands using Sonogashira−Hagihara coupling was developed. The electronic
nature of arylethynyl substituents affects the emission color and quantum yield of the resulting Al(III) complex. Photophysical properties of
the metallocomplexes correspond to the electron-withdrawing/-donating character of the arylethynyl substituents. Optical properties of such
Al(III) complexes correlate with the Hammett constant values of the respective substituents. This strategy offers a powerful tool for the preparation
of electroluminophores with predictable photophysical properties.

Emission properties of metallocomplexes are in general
controlled by a number of factors, including electronic
properties of the ligand and metal ion, coordination bond
lengths and angles that affect the energy mixing, and splitting
of electronic states involved in the emission. The design of
novel emissive materials with improved photonic properties
is predicated upon detailed understanding of the relationship
between the structure of a ligand and photonic properties of
the resulting metallocomplexes.

Among the luminescent metallocomplexes, tris(8-quino-
linolate)Al(III) (AlQ 3) plays an important role as an elec-
troluminophore and the most stable electron-transporting
compound currently used in organic light-emitting diodes
(OLEDs).1,2 AlQ3-type complexes display ligand-centered

excited states.3 Light emission of the AlQ3 complexes
originates from the electronicπ-π* transitions in the
quinolinolate ligands.4,5 The HOMO-orbitals are located on
the phenoxide side of the ligand, while the LUMO-orbitals
are located on the pyridyl side.2b This suggests that substit-
uents attached to the quinolinolate ligand may be used as a
handle for tuning of the complex emission. The literature,
however, provides spotty evidence supporting the correlation
of the substituent properties with the photophysical properties
of quinolinolate chromophores. In general, electron-donating
groups (EDGs) such as methyl attached to the pyridine ring
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cause a blue shift in the complex emission1,6 (∼510 nm)
compared to the emission of the parent AlQ3 (526 nm), while
introduction of alkyls to the benzene ring causes a red shift
(g530 nnm).1,2b,7 The presence of electron-withdrawing
groups (EWGs) such as fluoro-, chloro-,8a,4 and cyano8b

groups in the 5- or 7-position of the benzene ring results in
almost negligible emission shifts (520-530 nm), while strong
EWGs such as sulfonamide (-SO2NR2) result in significantly
blue-shifted emission (∼480 nm).8c

In an effort to explore the magnitude of the substituent
effect and its possible use in the emission color tuning in
AlQ3 complexes, we decided to synthesize a series of 8-hy-
droxyquinoline ligands (Q) with various aryl substituents (Ar)
connected together via an ethynylene spacer (E). The inclu-
sion of the ethynylene spacer was also motivated by a
high degree of electronic communication between the ligand
and the substituted aryl moiety as well as avoiding a poten-
tial interaction ofortho-substituents on Ar with the Q-moiety
in the case of directly attached aryl moieties (Q-Ar).
Structures of the complexes prepared in this study are shown
in Figure 1.

The strategy for the synthesis of the ligands utilized in
complexes1a-h is depicted in Scheme 1. Pathway A was
used for the attachment of electron-deficient arenes, while
pathway B was used for the synthesis of electron-rich ligands
4a,b,d. The only exception was the synthesis of the 2-(4-
pyridyl)ethynyl compound4c, which was synthesized using
pathway B.

The synthesis of complexes1a-h departs from 5-bromo-
quinoline-8-hydroxyquinoline,9 which was converted to the
corresponding Boc-derivative2 by reaction with di-tert-butyl
dicarbonate. The Boc group was selected over the published
methyl,10 benzyl,11 and TBDMS12 groups because of its easy
deprotection compared to Bn/Me protection and the crystal-
linity of the TBDMS derivatives.

According to pathway A, compound2 underwent Sono-
gashira-Hagihara coupling13 with TMS-acetylene fol-
lowed by KF-mediated deprotection of the TMS group to
give 5-ethynyl-5-BocO-quinoline3 in 69% overall yield
(Scheme 2).
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Figure 1. Structures of tris(5-arylethynyl-8-quinolinolate)Al(III)
complexes1a-h.

Scheme 1. Strategy for Synthesis of Protected Quinolate
Ligands

Scheme 2. Synthesis of Quinolinolate Ligandsa

a Reaction conditions: (i) Pd(TPP)4 (5%), CuI (5%), DIPEA,
THF; (ii) KF (2 equiv), MeOH; (iii) piperidine (3 equiv), CH2Cl2;
(iv) TFA (5 equiv), CH2Cl2.
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zonitrile were then attached using standard conditions for
Sonogashira-Hagihara coupling to give4a (83%),4b (62%),
and4d (97%), respectively. The same method was also used
for the reaction withp-bromonitrobenzene andp-bromopy-
ridine-N-oxide.15

Synthetic pathway B utilizes electron-rich ethynylarenes
such as ethynylbenzene,p-ethynylmethoxybenzene, 1-ethy-
nylpyrene, andp-ethynyldimethylaminobenzene to yield
ligands of general structures4e-h in 69, 65, 76, and 59%
yields, respectively. The same approach was used to prepare
8-BocO-5-[(pyridin-4-yl)ethynyl]quinoline4c from com-
mercially availablep-ethynylpyridine hydrochloride, albeit
the yield was lower (49%). All Boc-protected ligands were
purified by flash chromatography and recrystallization
(acetone-hexane). This method also yielded monocrystals
of 4g. X-ray analysis of4g (Figure 2) suggests effective
conjugation in the extended chromophore ligand.

Deprotection of the Boc group may be achieved in several
ways, including TFA- or piperidine-mediated deprotection.
For example, the dimethylamino derivative4h was depro-
tected by both TFA and piperidine to give after crystalliza-
tion essentially the same yields of 71% (5h) and 73%
(6h), respectively. Piperidine deprotection yielded ligands
5a-c,h in 79, 79, 90, and 73% yields, respectively. Depro-
tection using TFA gave trifluoroacetate salts of ligands6d-h
in 99, 67, 79, 94, and 71% yields. Ligands5a-c,h and6d-h
were converted to the corresponding complexes1a-h by
reaction of ethanolic solutions of ligands with aqueous AlCl3

followed by neutralization with triethylamine and crystal-
lization from ethanol and dichloromethane-hexane. All
complexes1a-h are soluble in a variety of solvents,
including dichloromethane, THF, and DMSO and less soluble
in alcohols.

Successful emission color tuning in the complexes medi-
ated by the substituents may be observed by naked eye
examination of the solutions of the complexes and fluores-
cence spectroscopy. Complexes1a-h show bright photo-
luminescence upon excitation of the dichloromethane solution

with black light (365 nm). As expected, the emission shifts
from green-blue to yellow and red depending on the
electronic nature of the aryl (Figure 3).

Table 1 summarizes the optical properties of complexes
1a-h determined from UV-vis and fluorescence measure-
ments.

One can see that the emission maxima of complexes1a-h
span∼100 nm between 520 and 610 nm, and the emission
profiles at ca. 50% of the peaks intensity cover a significant
portion of the visible light spectrum (485-670 nm). Com-
plexes 1a-d also display reasonably high fluorescence
quantum yields, which makes them potentially useful as
electroluminophores. Because the emission of light by the
quinolinolate complexes originates from ligand-centered
excited states,3 we were intrigued by the possibility of
correlation of the photophysical properties with the Hammett

(15) Same method was also used for reaction withp-bromonitrobenzene
(76%) andp-bromopyridine-N-oxide (78%); however, these materials after
piperidine-mediated deprotection (97 and 73% yields, respectively) did not
yield complexes with appreciable luminescence properties and therefore
are not discussed in this communication.

Figure 3. Panel A: Emission of complexes1a-h upon illumina-
tion with black light (365 nm). Panel B: Emission spectra of
complexes1a-h.

Table 1. Optical Properties of Complexes1a-ha

compound Amax (ε)b λF [nm] ΦF
c τ [ns]

1a 407 (3.5 × 104) 520 0.317 11.85
b 410 (2.7 × 104) 538 0.228 8.67
c 414 (2.4 × 104) 541 0.235 8.95
d 414 (8.4 × 104) 545 0.203 6.61
e 421 (2.2 × 104) 561 0.088 3.56
f 421 (1.8 × 104) 569 0.047 1.86
g 385 (6.8 × 104) 573 0.036 1.28
h 425 (3.9 × 104) 600 0.009 0.89
AlQ3 388 (7.0 × 103) 526 0.171 15.38

a Used 30µM solutions in dichloromethane.b Units ) mol-1 cm-1.
c Determined using quinine sulfate as a standard.

Figure 2. X-ray structure of the protected ligand4g. Thermal
ellipsoids are scaled to the 30% probability level.
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constants to predict the emission of the complexes before
their synthesis is performed. Although the pool of compounds
1a-h bearing substituents with a known Hammett constant
(σp)16 is limited, one can clearly see that the photophysical
properties, namely, the fluorescence quantum yield and
lifetime, show excellent correlation (Figure 4A,B).

Additionally, photochemical properties of the prepared
complexes were investigated in terms of the energy gap
law,17 which describes the exponential energy gap depen-
dence of the nonradiative decay processes in the chromo-
phore. As the energy gap between the lowest excited state
and ground state increased, the photoluminescence lifetime
and quantum yield increased. Because the energy-gap law
correlation is based on recorded fluorescence lifetime, quan-
tum yield, and emission maxima recorded for each com-
pound, the successful correlation for compounds1a-h (Fig-
ure 5) attests to the high photonic quality of the prepared
materials.

We were concerned with the stability of compounds1a-h
regarding their potential use in OLEDs given the potential
sensitivity of the acetylene units to the electron injection.
Simple OLEDs were fabricated using ITO-modified glass
(anode), Baytron-P (hole-transport layer), a complex spin-
coated from CH2Cl2, and In-Ga (cathode). Although the
performance of these simple OLEDs was somewhat incon-
sistent, our preliminary results indicate that compounds1a-h
are potential electroluminophores. The OLEDs fabricated
using compounds prepared in this study showed turn-on
voltages at 6-7 V.

In conclusion, a new class of electroluminescent com-
pounds based on tris(8-quinolinolate)Al(III) with aryleth-
ynyl substituents was synthesized using a Sonogashira-
Hagihara coupling procedure. We have shown that the elec-
tronic nature of the arylethynyl substituent affects the emis-

sion color and fluorescence quantum yield of the resulting
Al(III) complex. The optical properties of the resulting Al-
(III) complexes correlate with the values of the Hammett
constant of the respective substituents. This strategy offers
a powerful tool for the preparation of electroluminophores
with predictable photophysical properties. Efforts toward
investigation of solid-state luminescence, fabrication, and
evaluation of OLEDs utilizing compounds1a-h are cur-
rently under way.
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Figure 4. Fluorescence quantum yield correlation with the
Hammett constant for complexes1d-f,h with correlation coef-
ficients R2 ) 0.9923 (panel A) andR2 ) 0.9899 (panel B).

Figure 5. Energy gap correlation performed for complexes
1a-h. Correlation coefficientR2 ) 0.9320.
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